

Meng-Ru Wu, Projjwal Banerjee, Gabriel Martinez-Pinedo, Tsuguo Aramaki, Eric Burns, Chuck Hailey, Jennifer Barnes, Georgia Karagiogi

MeV Astronomy: Unlocking the Multi-Messenger Universe



<sup>26</sup>Al traces the locations of young and massive stars.

# Where, oh where, is the r-process?



#### Supernovae

(e.g. Qian & Woosley 96; Mosta+14)



#### Neutron Star Mergers

(e.g Lattimer & Schramm 74; Freiburghaus+99)





# Where, oh where, is the r-process?



#### Supernovae

(e.g. Qian & Woosley 96; Mosta+14)



#### **Neutron Star Mergers**

(e.g Lattimer & Schramm 74; Freiburghaus+99)

AND/OR





## GW170817: Probably Typical in Milky Way



## Galactic Neutron Star Merger Rate



## Nuclei with X/ $\gamma$ decay lines: 100 yr < $\tau_{1/2}$ < 100 Myr

|                                | Isotope             | Decay channel                      | $t_{1/2}$           | major lines <sup>a</sup>    | intensity   |
|--------------------------------|---------------------|------------------------------------|---------------------|-----------------------------|-------------|
|                                |                     |                                    | $(10^5 \text{ yr})$ | (keV)                       | $\geq 30\%$ |
| rare/short-lived -             | <sup>249</sup> Cf   | $lpha$ to $^{245}{ m Cm}$          | 0.0035              | 388                         | 66.0        |
|                                | <sup>241</sup> Am   | $lpha$ to $^{237}{ m Np}$          | 0.0043              | 13.9                        | 37.0        |
|                                |                     |                                    |                     | 59.5                        | 35.9        |
|                                | $^{251}\mathrm{Cf}$ | $lpha$ to $^{247}\mathrm{Cm}$      | 0.0090              | 15                          | 53.0        |
|                                | $^{226}$ Ra         | $lphaeta$ to $^{206}\mathrm{Pb}$   | 0.016               | 351.9 ( <sup>214</sup> Pb)  | 35.6        |
|                                |                     |                                    |                     | $609.3~(^{214}Bi)$          | 45.5        |
|                                | <sup>240</sup> Pu   | $lpha$ to $^{236}{ m U}$           | 0.066               | 13.6                        | 9.6         |
|                                | <sup>243</sup> Am   | $lpha eta$ to $^{239} \mathrm{Pu}$ | 0.074               | 14.3 ( <sup>239</sup> Np)   | 43.3        |
|                                |                     |                                    |                     | 74.66                       | 67.2        |
|                                | <sup>229</sup> Th   | $lphaeta$ to $^{209}{ m Bi}$       | 0.079               | 12.3                        | 80.0        |
|                                |                     |                                    |                     | 40.0 ( <sup>225</sup> Ra)   | 30.0        |
|                                | $^{250}\mathrm{Cm}$ | $lphaeta$ to $^{246}\mathrm{Cm}$   | 0.083               | 679.2 ( <sup>246</sup> Am)  | 11.5        |
| rare -                         | $^{245}\mathrm{Cm}$ | $lphaeta$ to $^{237}{ m Np}$       | 0.084               | 14.3                        | 53.0        |
|                                | <sup>239</sup> Pu   | $lpha$ to $^{235}{ m U}$           | 0.24                | 13.6                        | 4.3         |
|                                | <sup>231</sup> Pa   | $lphaeta$ to $^{207}{ m Pb}$       | 0.33                | 12.7                        | 45.0        |
|                                | <sup>230</sup> Th   | $lphaeta$ to $^{208}{ m Pb}$       | 0.75                | 351.9 ( <sup>214</sup> Pb)  | 35.6        |
|                                |                     |                                    |                     | $609.3~(^{214}Bi)$          | 45.5        |
|                                | <sup>233</sup> U    | $lphaeta$ to $^{209}{ m Bi}$       | 1.59                | $12.3~(^{229}Th)$           | 80.0        |
|                                |                     |                                    |                     | 40.0 ( <sup>225</sup> Ra)   | 30.0        |
|                                | <sup>126</sup> Sn   | $eta$ to $^{126}{ m Te}$           | 2.3                 | 87.6                        | 37.0        |
| 2 <sup>nd</sup> R-Process Peak |                     |                                    |                     | 414.7 ( <sup>126</sup> Sb)  | 98          |
|                                |                     |                                    |                     | $666.3~(^{126}Sb)$          | 100         |
|                                |                     |                                    |                     | $695.0~(^{126}Sb)$          | 97          |
| ١                              | <sup>234</sup> U    | $lpha$ to $^{230}{ m Th}$          | 2.46                | 13.0                        | 10.0        |
| rare -                         | <sup>242</sup> Pu   | $lpha$ to $^{238}{ m U}$           | 3.73                | 13.6                        | 8.6         |
|                                | $^{237}\mathrm{Np}$ | $lphaeta$ to $^{209}{ m Bi}$       | 21.4                | $12.3~(^{229}Th)$           | 80.0        |
|                                |                     |                                    |                     | 13.3                        | 49.3        |
|                                |                     |                                    |                     | $40.0~(^{225}\text{Ra})$    | 30.0        |
|                                |                     |                                    |                     | 311.9 ( <sup>233</sup> Pa)  | 38.5        |
| 3 <sup>rd</sup> R-Process Peak | <sup>182</sup> Hf   | $eta$ to $^{182}{ m W}$            | 89                  | $67.7~(^{182}Ta)$           | 42.6        |
| 5 N-PIUCESS PEAK               |                     |                                    |                     | 270.4                       | 79.0        |
|                                | 0.17                | 207                                |                     | 1121.3 ( <sup>182</sup> Ta) | 35.24       |
|                                | $^{247}\mathrm{Cm}$ | $lphaeta$ to $^{235}{ m U}$        | 156                 | 14.3 ( <sup>239</sup> Np)   | 43.3        |
|                                |                     |                                    |                     | $74.66 (^{243}Am)$          | 67.2        |
| rare/long-lived                | 100                 | 100                                |                     | 402.4                       | 72.0        |
|                                | <sup>129</sup> I    | β to <sup>129</sup> Xe             | 157                 | 29.782                      | 36          |
| 7 1 2 7 1 2 3 1 1 2 3 1        | <sup>236</sup> U    | $lpha$ to $^{232}{ m Th}$          | 234                 | 13.0                        | 9.0         |
|                                | <sup>244</sup> Pu   | $lpha eta$ to $^{236} { m U}$      | 811                 | 14.3 ( <sup>240</sup> Np)   | 27.0        |
|                                |                     |                                    |                     | 554.6 ( <sup>240</sup> Np)  | 20.9        |
|                                |                     |                                    |                     |                             |             |

#### Monte Carlo Galactic Merger Remnants

Wu, Banerjee, BDM+19

- Populate Milky Way with NS merger remnants
  - traces stellar mass.
  - add "empirical" galaxy offset (account for NS natal kicks).
- Galactic merger rates:
  - optimistic case:  $R = 100 \text{ Myr}^{-1}$
  - pessimistic case: R = 10 Myr<sup>-1</sup>
- R-Process abundances
  - each merger assumed to release 0.04 M<sub>☉</sub> of
     r-process ejecta with solar system abundance ratios.
- Measure:
  - distances to mock remnants and their gamma-ray fluxes.
  - present-day physical/angular size and expansion velocity of remnants
     (remnant blast wave evolution calculated using average ISM density at merger location)



# Milky Way's Last Remnants

$$^{126} \text{Sn} (\tau_{1/2} = 2x10^5 \text{ yr})$$
  $E_{\gamma} \sim 400\text{-}700 \text{ keV}$   $^{10} \text{ Mergers Contributing}$ 



Many remnants outside Galactic plane

# Gamma-Ray Line Flux Distribution



Wu, Banerjee, BDM+19

#### Required: Big Advance in Line Sensitivity



Sensitivity improvement by searching for multiple lines?

### Remnant Properties

 $(^{126}Sn flux > 10^{-8} \gamma cm^{-2} s^{-1})$ 

Required: angular resolution <~ degrees

Required: energy resolution dE/E ~< 10<sup>-3</sup>





#### Co-Production of <sup>230</sup>Th Probes Actinide Production





Figure 5. Fraction of NSM remnants that produce  $\gamma$ -line fluxes larger than  $F_{\text{lim}} = 10^{-8} \ \gamma \ \text{cm}^{-2} \ \text{s}^{-1}$  from both the decay of <sup>126</sup>Sn and <sup>230</sup>Th as a function of the actinide abundance at production,  $Y_{\text{act}}$ , normalized to all remnants with <sup>126</sup>Sn fluxes exceeding the same  $F_{\text{lim}}$ . We show results separately for Model I and II, and in each case assume a Galactic merger rate  $f_{\text{NSM}} = 100 \ \text{Myr}^{-1}$ .

## Searching Old Supernova Remnants

#### 1 of every ~300 "SN remnants" could be masqurarding merger

Table 1. Ages, distances, and predicted  $^{126}$ Sn  $\gamma$ -ray line fluxes at 666.3 keV for nearby SN remnants for which the latter range exceeds  $10^{-6} \ \gamma \ \text{cm}^{-2} \ \text{s}^{-1}$ . We assume an ejecta mass  $M_{\rm ej} = 0.01 \ M_{\odot}$  and  $Y(^{126}\text{Sn}) = 1.7 \times 10^{-4}$ . The final column indicates the possible association of a compact object (P, M, CCO, PWN denote "pulsar", "magnetar", "central compact object", and "pulsar wind nebula", respectively).

| Source            | Age $(10^3 \text{ yr})$ | Distance (kpc) | Line Flux $(10^{-6} \ \gamma \ \text{cm}^{-2} \text{s}^{-1})$ | Compact Object or PWN? |
|-------------------|-------------------------|----------------|---------------------------------------------------------------|------------------------|
| Lupus Loop        | 15–31                   | 0.15-0.5       | 5.80-67.60                                                    | P?                     |
| Vela              | 9 – 27                  | 0.25 – 0.3     | 16.30 – 24.78                                                 | P                      |
| Antlia            | $(1-6)\times10^{3}$     | 0.06 – 0.34    | 0-21.75                                                       | P? CCO?                |
| $_{ m HB9}$       | 4–7                     | 0.4 – 1.2      | 1.08 – 9.83                                                   | M?                     |
| Vela Jr           | 2.4 – 5.1               | 0.5 – 1.0      | 1.57 – 6.32                                                   | CCO? P?                |
| 3FGL J2014.4+3606 | 11–12                   | 0.5 – 4        | 0.10 – 6.16                                                   | _                      |
| Cygnus Loop       | 10–20                   | 0.576 - 1      | 1.50 – 4.65                                                   | PWN?                   |
| Monoceros Loop    | 30 – 150                | 0.6 – 1.98     | 0.26 – 4.04                                                   | ?                      |
| IC443             | 3–30                    | 0.7 – 2        | $0.36 –\ 3.22$                                                | ?                      |
| 2FGL J2333.3+6237 | 7.7                     | 0.7            | 3.17                                                          | P?                     |
| HB21              | 4.8 - 15                | 0.8 – 2.1      | 0.34 – 2.45                                                   | _                      |
| G65.3 + 5.7       | 20                      | 0.8            | 2.34                                                          | P?                     |
| RX J1713.7-3946   | 1-2.1                   | 1              | 1.58 – 1.59                                                   | CCO?                   |
| DA 495            | 7-155                   | 1 - 3.6        | 0.08 – 1.56                                                   | PWN?                   |
| G107.5-01.5       | 3-6                     | 1.1            | 1.29 – 1.30                                                   | _                      |
| CTA 1             | 13                      | 1.1 – 1.7      | 0.53 – 1.26                                                   | P                      |
| S147 Sh2-240      | 26 – 34                 | 1.1 – 1.5      | 0.64 – 1.22                                                   | P                      |
| R5                | 20-30                   | 1.15           | 1.10 – 1.13                                                   | _                      |

# 50-Year Dream: Halfnium Background



# Extragalactic Mergers?

- Requires rapid response
   hours days to
   observe near peak.
- Requires very nearby
   10 Mpc mergers, which are extremely rare
   1 per decade—century





## Summary

- GW170817 revealed NS mergers can be prodigious sources of rprocess nucleosynthesis. However, open questions remain about the ejecta composition.
- The last NS merger in the Milky Way took place ~10<sup>4</sup> years ago. Its remnant could still be visible and its discovery could help answer these questions.
- Gamma-ray decay lines offer a potentially unambiguous signpost to the last mergers and a probe of the r-process.
- The most promising lines are from  $^{126}$ Sn (at 415, 666, 695 keV). At least ~one remnant expected with F >  $10^{-7}$   $\gamma$  cm<sup>-2</sup> s<sup>-1</sup>, though one can hope to get luckier.
- Most promising search strategy is a survey above and below the Galactic plane. Though a long shot, deep integrations on individual SN remnants can proto-type the analysis.
- Joint detection of gamma-lines from ultra-heavies (e.g. <sup>230</sup>Th) would confirm third-peak r-process production in NS mergers.